"Programmation Orienté Objet

- JAVA -

Plan

.

1.
1.
V.
V.
VI.
VII.
VIII.

Introduction

Les caractéristiques de Java

Les modes de programmation

JDK / JRE

Les éditions de Java

Les APl et Outils de développement
Les conventions d’écriture
Modificateurs et visibilité

Introduction

Java est un langage de programmation orienté objet
développé par Sun Microsystems. Sa premiere version a
été publié en 1995.

Les caractéristiques

Java est interprété (WORA)

Java est portable : il est indépendant de toute plate-forme
Java est orienté objet

Java est simple

Java est fortement typé

Java assure |a gestion de la mémoire

Java est sure

Java est économe

Java est multitache

////\\‘“ i

Les caractéristiques

Java est interprété:

Le code source est compilé en pseudo code ou byte code puis exécuté
par un interpréteur Java : la Java Virtual Machine (JVM). Ce concept est

a la base du slogan de Sun pour Java : WORA (Write Once, Run
Anywhere : écrire une fois, exécuter partout).

Les caractéristiques

Java est portable:

Il n'y a pas de compilation spécifique pour chaque plate forme. Le code
reste indépendant de la machine sur laquelle il s'exécute. Il est
possible d'exécuter des programmes Java sur tous les environnements
qui possedent une Java Virtual Machine. Cette indépendance est

assurée au niveau du code source grace a Unicode et au niveau du
byte code.

/

Les caractéristiques

Java est orienté objet:

Comme la plupart des langages récents, Java est orienté objet. Chaque
fichier source contient la définition d'une ou plusieurs classes qui sont
utilisées les unes avec les autres pour former une application. Java

n'est pas completement objet car il définit des types primitifs (entier,
caractere, flottant, booléen,...).

/
- =

Les caractéristiques

Java est simple:

Le choix de ses auteurs a été d'abandonner des éléments mal compris
ou mal exploités des autres langages tels que la notion de pointeurs
(pour éviter les incidents en manipulant directement la mémoire),
I'héritage multiple et la surcharge des opérateurs, ...

////\\‘“ i

Les caractéristiques

Java est fortement typé:

Toutes les variables sont typées et il n'existe pas de conversion
automatique qui risquerait une perte de données. Si une telle
conversion doit étre réalisée, le développeur doit obligatoirement

utiliser un cast ou une méthode statique fournie en standard pour la
réaliser.

Les caractéristiques

Java assure la gestion de la mémoire:

L'allocation de la mémoire pour un objet est automatique a sa création
et Java récupere automatiquement la mémoire inutilisée grace au

garbage collector qui restitue les zones de mémoire laissées libres
suite a la destruction des objets.

/
- -

Les caractéristiques

Java est sure:

La sécurité fait partie intégrante du systeme d'exécution et du
compilateur. Un programme Java planté ne menace pas le systeme
d'exploitation. || ne peut pas y avoir d'acces direct a la mémoire.
L'acces au disque dur est réglementé dans une applet.

////\\‘“ i

Les caractéristiques

Java est économe:

Le pseudo code a une taille relativement petite car les bibliotheques
de classes requises ne sont liées qu'a I'exécution.

Java est multitache:

Il permet ['utilisation de threads qui sont des unités d'exécution
isolées. La JVM, elle méme, utilise plusieurs threads.

/ 7

Les modes de programmation

Il existe 2 types de programmes avec la version standard de Java : les
applets et les applications.

Les principales différences entre une applet et une application sont :

Les applets n'ont pas de méthode main() : la méthode main() est
appelée par la machine virtuelle pour exécuter une application.

Les applets ne peuvent pas étre testées avec l'interpréteur mais
doivent étre intégrées a une page HTML, elle méme visualisée avec
un navigateur disposant d'un plugin sachant gérer les applets Java,
ou testées avec |‘AppletViewer.

/ '

Le JDK (Java Developpement Kit)

Définition:
Le JDK est l'ensemble des programmes nécessaires pour le
développement des applications Java. Il regroupe ainsi les programme

javac.exe, java.exe et appletviewer.exe pour exécuter les applets, ainsi
que d’autres classes et utilitaires de développements.

/ 7

Le JDK (Java Developpement Kit)

Evolution:

Depuis 1995 jusqu’a aujourd’hui le JDK n’a cessé d’évoluer et d’étre
étendu de version en version. En se retrouve finalement avec 7
versions.

Le JDK 1.0 (lancé en 1995 et constitué de quelques 201 classes et
interfaces) a subi quelques modifications jusqu’a sa derniéere version
1.0.2.

Le JDK 1.1 (503 classes et interfaces)

Le JDK 1.2 (1520 classes et interfaces) a subi lui-méme plusieurs
modifications jusqu’a sa derniere version 1.1.8.

Le JDK 1.3 (1840 classes et interfaces) annoncé en décembre 1998 a
évolué avec sa derniere version 1.2.2.

_—

Le JDK (Java Developpement Kit)

Evolution:

Le JDK 1.4 (Nom de code Merlin, avec 135 packages et 2990 classes
et interfaces).

Le JDK 1.5 (ou JDK 5, Nom de code Tigre, avec 166 packages et 3280
classes et interfaces).

Le JDK 1.6 (Nom de code Mustang, avec 202 packages et 3780
classes et interfaces).

Le JDK 1.7 derniere version jusqu’a maintenant.

e

////\\‘“ i

Le JADK (Java Developpement Kit)

Installation sur le disque:

Généralement le JDK est délivré ou téléchargé sous forme d’un
programme dont l'exécution conduit I'installation du kit.

Si I'on prend par exemple du JDK 1.7.0.17, son installation par défaut
créera I'arborescence suivante (de quelques 227 Mo)

< Java
4) jdki7.0.21 Tout les programmes gu’on a besoin pour
bin développer (java, javac, ..) se trouveront
£ alors dans le répertoire : jdk1.7.0.17\bin
include

= gu’il est possible d’ajouter au path pour
lib étre accessible depuis n’importe quel

BB srczip répertoire du disque.
jre?

/ '

Le JRE (Java Runtime Environnement)

Définition:
Le JRE (Java Runtime Environnement) contient uniquement
I'environnement d'exécution de programmes Java. Le JDK contient

lui méme le JRE. Le JRE seul doit étre installé sur les machines ou
des applications Java doivent étre exécutées.

—

Les éditions de Java

Sun définit trois plateformes d'exécution (ou éditions) pour Java pour
des cibles distinctes selon les besoins des applications a développer :

e Java Standard Edition (J2SE / Java SE) : environnement d'exécution et
ensemble complet d'API pour des applications de type desktop. Cette
plate forme sert de base en tout ou partie aux autres plateformes.

e Java Enterprise Edition (J2EE / Java EE) : environnement d'exécution
reposant intégralement sur Java SE pour le développement
d'applications d'entreprises.

e Java Micro Edition (J2ME / Java ME) : environnement d'exécution et API
pour le développement d'applications sur appareils mobiles et
embargués dont les capacités ne permettent pas la mise en ceuvre de
Java SE.

/ |

Les éditions de Java

La séparation en trois plateformes permet au développeur de mieux cibler
I'environnement d'exécution et de faire évoluer les plateformes de facon plus
indépendante.

Avec différentes eéditions, les types d'applications qui peuvent étre
développées en Java sont nombreux et variés :

Applications desktop

Applications web : servlets/JSP, portlets, applets
Applications pour appareil mobile (MIDP) : midlets
Applications pour appareil embarqué (CDC) : Xlets
Applications pour carte a puce (Javacard) : applets Javacard

“Les API et outils

Ainsi I'ensemble des API et des outils

utilisables est énorme et évolue tres

rapidement.
Java Bean RMI IO Applet
Reflexion Collection Logging AWT
Net (réseau) Preferences Security JEC
Internationalisation Exp réguliére Swing
Les outils libres (les plus connus)
Jakarta Tomeat Jakarta Ant JBoss Apache Axis
JUnit Eclipse NetBeans Maven

“Les API et outils

Les autres API

Données Web Entreprise XML Divers
JDBC Servlets Java Mail JAXP JAI
JDO JSP JNDI SAX JAAS
JPA JSTL EJB DOM JCA
Jave Server Faces IMS JAXB JCE
IMX Stax Java Help
ITA Services Web IMF
RMI-IIOP JAXM JSSE
Java IDL JAXR Java speech
JINI JAX-RPC Java 3D
JIXTA SAAJ

JAX-WS

" Les API et outils

Les API de la communauté open source

Données Web Entreprise XML Divers
OIB Jakarta Struts Spring Apache Xerces Jakarta Logd;
Castor Webmacro Apache Axis Apache Xalan Jakarta regexp
Hibernate Expresso Seams JDOM
Barracuda DOM4I
Turbme
GWT

Les difféerences entre Java et JavaScript

Java Javascript
Auteur Développé par Sun Microsystems Développé par Netscape Communications
Format Compilé sous forme de byte-code Interprété
; Applet téléchargé comme un élément de la page (B
Stockage “_1; llj : PAZE | Source inséré dans la page web
Utilisation Utilisable pour développer tous les types Utilisable uniquement pour "dynamiser” les
s d'applications pages web
Exécution Exécuté dans la JVM du navigateur Exécuté par le navigateur
gy Manipule des objets mais ne permet pas d'en
POO Orienté objets oy) P P
définir
Typage Fortement typé Pas de contréle de type
Complexité du ; .
o dep Code relativement complexe Code simple

Les packages

Définition:

Le JDK dispose de plusieurs classes préte a étre utilisés. Ces classes sont
délivrées avec le JDK ou le JRE et elles sont organisées en des
arborescences de répertoire. Ainsi par exemple la classe String se
trouve dans le sous répertoire java\lang . Ce dernier est appelé un
paquetage ou package.

Exemple de package:

java.util, java.awt, javax.swing ...

Les packages

Remarque:

Dans un programme java, pour utiliser une classe d’un certain package
par exemple la classe Vector du package java.util, on démarre le
programme avec la ligne:

import java.util.*;

Ce qui signifie que toutes les classes du package sont accessible ou
encore:

import java.util.vector;
Pour n’accéder que a la classe Vector

" Les conventions d’écriture

I- Les noms de packages sont entierement en minuscule. Exemples

java.awt
javax.swing
javax.swing.filechooser

2- Un nom de classe est une sequence de mots dont le premier caractere de chaque mot

est en majuscule et les autres en minuscule. Exemples

String
StringBuffer
ComboBoxEditor

" Les conventions d’écriture

~
3-

Un nom de methode est une sequence de mots dont le premuer caractere de chaque

mot est en majuscule et les autres en minuscule sauf le premier mot qui est

entierement en minuscule. Exemples :

append

toString

deleteCharAt

Une propriéte est en principe un membre privee donc non accessible directement et
par suite on peut lut choisir un nom librement. Sinon on lui applique la meme regle

que celle d’une methode.

" Les conventions d’écriture

5- Une constante final) est une séquence de mots majuscules sépares par un blanc

souligne « »

PI
MIN VALUE
MAX VALUE

6- Les primitives (types de base ou type primitif) et les mots clés sont en minuscule :

byte, int, ...
while, for, if
this, super, try, cach, length, ...

class, extends, implements, null, ...

Structure générale d’'un programme Java

Le squelette générale d’'un programme Java se présente comme suit
(chaque classe dans fichier séparé et portant le méme nom que celui

de la classe)

class NomDeClassel {
// Variables df instance de la classe
// Méthodes de la classe

}

class NomDeClasse2 {
/S Variables df instance de 1a classe
// Méthodes de la classe

}

class NomDeClassePrincipale {
// Variables d’ instance de la classe
// Méthodes de la classe
public static void main(sSstring args|[])
{
// Code du programme principal

}

Modificateurs et visibilité

Il existe 5 types de modificateurs qui peuvent étre associés a une
données ou une méthode: modificateurs de synchronisation, de

visibilité, de permanence, de constance et d’abstraction.

I- Synchronisation | 2- Visibilite | 3- Permanence | 4- Constance Type Nom
synchronized public static final void

(seulement avec | private it

les methodes) protected

5- Abstraction

Abstract

(seulement les methodes qui ne sont pas synchronized, static, final ou

private)

- -
Modificateurs et visibilité

Modificateur synchronized:

Permet de mettre en place une méthode ou un bloc de programme
verrouillé par lintermédiaire de mécanisme de moniteur. Une
méthode est synchronized est une méthode dont | ‘acces sur un méme
objet est réalisé en exclusion mutuelle.

Modificateurs et visibilité

Modificateur private, protected et public:

Une donnée ou méthode private est inaccessible depuis |'extérieur
de la classe ou elle est définie méme dans une classe dérivée.

Une donnée ou méthode public est accessible depuis I'extérieur de
la classe ou elle est définie.

Une donnée ou méthode protected est protégé contre tous acces
externe comme private sauf a partir des classes dérivées. Une
donnée ou méthode protected est donc accessible dans une classe

fille.

Modificateurs et visibilité

Remarque:

Lorsqu’on redéfinie une méthode dans une classe fille, il est obligatoire
de conserver sont modificateur de visibilité ou d’utiliser un privilege
d’acces plus fort, Cad:

Une méthode public reste public
Une méthode protected reste protected ou devient public
Une méthode private reste private ou devient protected ou public

Modificateurs et visibilité

Modificateur static:

Les variables d'instance sont des variables propres a un objet. Il est
possible de définir une variable de classe qui est partagée entre toutes
les instances d'une méme classe : elle n'existe donc qu'une seule fois
en mémoire. Une telle variable permet de stocker une constante ou
une valeur modifiée tour a tour par les instances de la classe. Elle se
définit avec le mot clé static.

Les données static sont appelées variables de classe et les méthodes
static sont également appelées méthodes de classe.

Modificateurs et visibilité

Remarque:

Puisque les données non-static d’'une classe n‘ont d’existence que
lorsqu’on a instancier un objet de la classe et inversement une
méthode static existe sans avoir besoin de créer d’instance, une
méthode static ne peut pas donc accéder a une donnée non-static ou
a une autre méthode non-static.

- Modificateurs et visibilité

FExemple -

class Class1l ({
static int x = 20;
ant 5y — 303

static void pl () {

x = x + 1 ; // correcte
HE—— . /) dincorrecte
e=til)>— // incorrecte

}

wodd. Pp2:C) { // méthode non—static
x ++ ; // correcte
vy ++ ; // correcte
rld() ,; // correcte

}

”//‘fjﬁ:::::::::::::ﬁ\\' e
Modificateurs et visibilité

Modificateur final:

Les données final sont des constantes. Ces données sont généralement
définies en plus public et static afin d’étre accessible depuis I'extérieur
de la classe et directement par I'intermédiaire du nom de celle-ci sans
avoir besoin de créer une instance de la classe.

Exemple :

class Constantes {
public static final int CONST1 = 20;

public static final double PI = 3.14;

Modificateurs et visibilité

Remarque:

Une méthode déclarée final ne peut pas étre redéfinie dans une sous
classe.

Lorsque le modificateur final est ajouté a une classe, il est interdit de
créer une classe qui en hérite.

- -
Modificateurs et visibilité

Modificateur abstract:

Ce modificateur permet de définir une méthode abstraite. Cad une
méthode dont le corps n’est pas défini. Une classe qui comporte une
méthode abstraite doit, elle aussi, étre définie abstraite. Il s'agit d’'une
classe de spécification qui ne peut étre directement instancié. Elle
nécessite d’étre redéfinie dans une classe fille qui aura donc l'objectif
d’'implémenter les spécifications de la classe abstraite mere.

abstract class ClassBAbstraite

abstract typeretour methodeRbstraite (parametres) ;

Modificateurs et visibilité

Remarque:

Vue la notion d’abstraction, une méthode abstraite ne peut pas étre:
synchronized: car elle n’est pas encore défini.
static : pour la méme raison

final : car cela va empécher sa redéfinition dans la classe fille, or une
méthode abstract n’a pas d’existence que lorsqu’elle est définie.

private : la redéfinition d’'une méthode privée signifie la définition
d’'une nouvelle méthode qui porte le méme nom. De ce fait on peut

pas donner d’existence a une méthode abstraite déclarée private. Ce
qui interdit la combinaison private- abstract.

g

La méthode main

La remarque que nous avons fait a propos des méthodes static reste
valable pour le main qui est une méthode static. Cela impose une
grande restriction, car la méthode main ne peut accéder qu’a des
données et des méthodes static. Pour résoudre ce probleme, il suffit de
créer un objet de la classe principale dans la méthode main. Ce qui
impligue I'exécution du constructeur. Ce dernier n’est pas une méthode
static on peut alors y mettre tous les acces nécessaires aux différents
membres non-static. Le squelette d’'un programme Java est souvent
alors formé de la maniere suivante :

“La méthode main

class NomDeClasse {

// données membres

NomDeClasse () // Constructeur
{

public static void main(String args([])

{

new NomDeClasse() ;

" La méthode main

Exemple:

class Classl {
static int x = 20;
int y = 30;

Classl () {
X =3 o 1 i L correcte
y =y * 2 ; // correcte
p2() ; // correcte
}
void p2 () {
System.out.println("x = " + x +

}

public static void main (String args([])
new Classl () ;

-~

Gk 2 // dincorrecte

Py
g#=4—+ // incorrecte

{

