
Chapitre 2

Environnements de développement JAVA

bekkalimohammed@gmail.com

Plan
I. Introduction

II. Les caractéristiques de Java

III. Les modes de programmation

IV. JDK / JRE

V. Les éditions de Java

VI. Les API et Outils de développement

VII. Les conventions d’écriture

VIII. Modificateurs et visibilité

Java est un langage de programmation orienté objet
développé par Sun Microsystems. Sa première version a
été publié en 1995.

Introduction

Les caractéristiques

 Java est interprété (WORA)

 Java est portable : il est indépendant de toute plate-forme

 Java est orienté objet

 Java est simple

 Java est fortement typé

 Java assure la gestion de la mémoire

 Java est sure

 Java est économe

 Java est multitâche

Les caractéristiques

Java est interprété:

Le code source est compilé en pseudo code ou byte code puis exécuté
par un interpréteur Java : la Java Virtual Machine (JVM). Ce concept est
à la base du slogan de Sun pour Java : WORA (Write Once, Run
Anywhere : écrire une fois, exécuter partout).

Les caractéristiques

Java est portable:

Il n'y a pas de compilation spécifique pour chaque plate forme. Le code
reste indépendant de la machine sur laquelle il s'exécute. Il est
possible d'exécuter des programmes Java sur tous les environnements
qui possèdent une Java Virtual Machine. Cette indépendance est
assurée au niveau du code source grâce à Unicode et au niveau du
byte code.

Les caractéristiques

Java est orienté objet:

Comme la plupart des langages récents, Java est orienté objet. Chaque
fichier source contient la définition d'une ou plusieurs classes qui sont
utilisées les unes avec les autres pour former une application. Java
n'est pas complètement objet car il définit des types primitifs (entier,
caractère, flottant, booléen,...).

Les caractéristiques

Java est simple:

Le choix de ses auteurs a été d'abandonner des éléments mal compris
ou mal exploités des autres langages tels que la notion de pointeurs
(pour éviter les incidents en manipulant directement la mémoire),
l'héritage multiple et la surcharge des opérateurs, ...

Les caractéristiques

Java est fortement typé:

Toutes les variables sont typées et il n'existe pas de conversion
automatique qui risquerait une perte de données. Si une telle
conversion doit être réalisée, le développeur doit obligatoirement
utiliser un cast ou une méthode statique fournie en standard pour la
réaliser.

Les caractéristiques

Java assure la gestion de la mémoire:

L'allocation de la mémoire pour un objet est automatique à sa création
et Java récupère automatiquement la mémoire inutilisée grâce au
garbage collector qui restitue les zones de mémoire laissées libres
suite à la destruction des objets.

Les caractéristiques

Java est sure:

La sécurité fait partie intégrante du système d'exécution et du
compilateur. Un programme Java planté ne menace pas le système
d'exploitation. Il ne peut pas y avoir d'accès direct à la mémoire.
L'accès au disque dur est réglementé dans une applet.

Les caractéristiques

Java est économe:

Le pseudo code a une taille relativement petite car les bibliothèques
de classes requises ne sont liées qu'à l'exécution.

Java est multitâche:

Il permet l'utilisation de threads qui sont des unités d'exécution
isolées. La JVM, elle même, utilise plusieurs threads.

Les modes de programmation

Il existe 2 types de programmes avec la version standard de Java : les
applets et les applications.

Les principales différences entre une applet et une application sont :

 Les applets n'ont pas de méthode main() : la méthode main() est
appelée par la machine virtuelle pour exécuter une application.

 Les applets ne peuvent pas être testées avec l'interpréteur mais
doivent être intégrées à une page HTML, elle même visualisée avec
un navigateur disposant d'un plugin sachant gérer les applets Java,
ou testées avec l‘AppletViewer.

Le JDK (Java Developpement Kit)

Définition:

Le JDK est l’ensemble des programmes nécessaires pour le
développement des applications Java. Il regroupe ainsi les programme
javac.exe, java.exe et appletviewer.exe pour exécuter les applets, ainsi
que d’autres classes et utilitaires de développements.

Le JDK (Java Developpement Kit)

Evolution:

Depuis 1995 jusqu’à aujourd’hui le JDK n’a cessé d’évoluer et d’être
étendu de version en version. En se retrouve finalement avec 7
versions.

 Le JDK 1.0 (lancé en 1995 et constitué de quelques 201 classes et
interfaces) a subi quelques modifications jusqu’à sa dernière version
1.0.2.

 Le JDK 1.1 (503 classes et interfaces)

 Le JDK 1.2 (1520 classes et interfaces) a subi lui-même plusieurs
modifications jusqu’à sa dernière version 1.1.8.

 Le JDK 1.3 (1840 classes et interfaces) annoncé en décembre 1998 a
évolué avec sa dernière version 1.2.2.

Le JDK (Java Developpement Kit)

Evolution:

 Le JDK 1.4 (Nom de code Merlin, avec 135 packages et 2990 classes
et interfaces).

 Le JDK 1.5 (ou JDK 5, Nom de code Tigre, avec 166 packages et 3280
classes et interfaces).

 Le JDK 1.6 (Nom de code Mustang, avec 202 packages et 3780
classes et interfaces).

 Le JDK 1.7 dernière version jusqu’à maintenant.

Le JDK (Java Developpement Kit)

Installation sur le disque:

 Généralement le JDK est délivré ou téléchargé sous forme d’un
programme dont l’exécution conduit l’installation du kit.

 Si l’on prend par exemple du JDK 1.7.0.17, son installation par défaut
créera l’arborescence suivante (de quelques 227 Mo)

Tout les programmes qu’on a besoin pour
développer (java, javac, ..) se trouveront
alors dans le répertoire : jdk1.7.0.17\bin
qu’il est possible d’ajouter au path pour
être accessible depuis n’importe quel
répertoire du disque.

Le JRE (Java Runtime Environnement)

Définition:

Le JRE (Java Runtime Environnement) contient uniquement
l'environnement d'exécution de programmes Java. Le JDK contient
lui même le JRE. Le JRE seul doit être installé sur les machines où
des applications Java doivent être exécutées.

Les éditions de Java

Sun définit trois plateformes d'exécution (ou éditions) pour Java pour
des cibles distinctes selon les besoins des applications à développer :

 Java Standard Edition (J2SE / Java SE) : environnement d'exécution et
ensemble complet d'API pour des applications de type desktop. Cette
plate forme sert de base en tout ou partie aux autres plateformes.

 Java Enterprise Edition (J2EE / Java EE) : environnement d'exécution
reposant intégralement sur Java SE pour le développement
d'applications d'entreprises.

 Java Micro Edition (J2ME / Java ME) : environnement d'exécution et API
pour le développement d'applications sur appareils mobiles et
embarqués dont les capacités ne permettent pas la mise en œuvre de
Java SE.

Les éditions de Java

La séparation en trois plateformes permet au développeur de mieux cibler
l'environnement d'exécution et de faire évoluer les plateformes de façon plus
indépendante.

Avec différentes éditions, les types d'applications qui peuvent être
développées en Java sont nombreux et variés :

 Applications desktop

 Applications web : servlets/JSP, portlets, applets

 Applications pour appareil mobile (MIDP) : midlets

 Applications pour appareil embarqué (CDC) : Xlets

 Applications pour carte à puce (Javacard) : applets Javacard

Les API et outils

Ainsi l'ensemble des API et des outils utilisables est énorme et évolue très
rapidement.

Les API et outils

Les API et outils

Les différences entre Java et JavaScript

Les packages

Définition:

Le JDK dispose de plusieurs classes prête a être utilisés. Ces classes sont
délivrées avec le JDK ou le JRE et elles sont organisées en des
arborescences de répertoire. Ainsi par exemple la classe String se
trouve dans le sous répertoire java\lang . Ce dernier est appelé un
paquetage ou package.

Exemple de package:

java.util, java.awt, javax.swing …

Les packages

Remarque:

Dans un programme java, pour utiliser une classe d’un certain package
par exemple la classe Vector du package java.util, on démarre le
programme avec la ligne:

import java.util.*;

Ce qui signifie que toutes les classes du package sont accessible ou
encore:

import java.util.vector;

Pour n’accéder que à la classe Vector

Les conventions d’écriture

Les conventions d’écriture

Les conventions d’écriture

Structure générale d’un programme Java

Le squelette générale d’un programme Java se présente comme suit
(chaque classe dans fichier séparé et portant le même nom que celui
de la classe)

Modificateurs et visibilité

Il existe 5 types de modificateurs qui peuvent être associés à une
données ou une méthode: modificateurs de synchronisation, de
visibilité, de permanence, de constance et d’abstraction.

Modificateurs et visibilité

Modificateur synchronized:

Permet de mettre en place une méthode ou un bloc de programme
verrouillé par l’intermédiaire de mécanisme de moniteur. Une
méthode est synchronized est une méthode dont l ’accès sur un même
objet est réalisé en exclusion mutuelle.

Modificateurs et visibilité

Modificateur private, protected et public:

 Une donnée ou méthode private est inaccessible depuis l’extérieur
de la classe où elle est définie même dans une classe dérivée.

 Une donnée ou méthode public est accessible depuis l’extérieur de
la classe où elle est définie.

 Une donnée ou méthode protected est protégé contre tous accès
externe comme private sauf à partir des classes dérivées. Une
donnée ou méthode protected est donc accessible dans une classe
fille.

Modificateurs et visibilité

Remarque:

Lorsqu’on redéfinie une méthode dans une classe fille, il est obligatoire
de conserver sont modificateur de visibilité ou d’utiliser un privilège
d’accès plus fort, Càd:

 Une méthode public reste public

 Une méthode protected reste protected ou devient public

 Une méthode private reste private ou devient protected ou public

Modificateurs et visibilité

Modificateur static:

Les variables d'instance sont des variables propres à un objet. Il est
possible de définir une variable de classe qui est partagée entre toutes
les instances d'une même classe : elle n'existe donc qu'une seule fois
en mémoire. Une telle variable permet de stocker une constante ou
une valeur modifiée tour à tour par les instances de la classe. Elle se
définit avec le mot clé static.

Les données static sont appelées variables de classe et les méthodes
static sont également appelées méthodes de classe.

Modificateurs et visibilité

Remarque:

Puisque les données non-static d’une classe n’ont d’existence que
lorsqu’on a instancier un objet de la classe et inversement une
méthode static existe sans avoir besoin de créer d’instance, une
méthode static ne peut pas donc accéder à une donnée non-static ou
à une autre méthode non-static.

Modificateurs et visibilité

Modificateurs et visibilité

Modificateur final:

Les données final sont des constantes. Ces données sont généralement
définies en plus public et static afin d’être accessible depuis l’extérieur
de la classe et directement par l’intermédiaire du nom de celle-ci sans
avoir besoin de créer une instance de la classe.

Modificateurs et visibilité

Remarque:

 Une méthode déclarée final ne peut pas être redéfinie dans une sous
classe.

 Lorsque le modificateur final est ajouté à une classe, il est interdit de
créer une classe qui en hérite.

Modificateurs et visibilité

Modificateur abstract:

Ce modificateur permet de définir une méthode abstraite. Càd une
méthode dont le corps n’est pas défini. Une classe qui comporte une
méthode abstraite doit, elle aussi, être définie abstraite. Il s’agit d’une
classe de spécification qui ne peut être directement instancié. Elle
nécessite d’être redéfinie dans une classe fille qui aura donc l’objectif
d’implémenter les spécifications de la classe abstraite mère.

Modificateurs et visibilité

Remarque:

Vue la notion d’abstraction, une méthode abstraite ne peut pas être:

 synchronized: car elle n’est pas encore défini.

 static : pour la même raison

 final : car cela va empêcher sa redéfinition dans la classe fille, or une
méthode abstract n’a pas d’existence que lorsqu’elle est définie.

 private : la redéfinition d’une méthode privée signifie la définition
d’une nouvelle méthode qui porte le même nom. De ce fait on peut
pas donner d’existence à une méthode abstraite déclarée private. Ce
qui interdit la combinaison private- abstract.

La méthode main

La remarque que nous avons fait à propos des méthodes static reste
valable pour le main qui est une méthode static. Cela impose une
grande restriction, car la méthode main ne peut accéder qu’à des
données et des méthodes static. Pour résoudre ce problème, il suffit de
créer un objet de la classe principale dans la méthode main. Ce qui
implique l’exécution du constructeur. Ce dernier n’est pas une méthode
static on peut alors y mettre tous les accès nécessaires aux différents
membres non-static. Le squelette d’un programme Java est souvent
alors formé de la manière suivante :

La méthode main

La méthode main

